67 research outputs found

    Simulation of a method to directly image exoplanets around multiple stars systems

    Get PDF
    Direct imaging of extra-solar planets has now become a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the GPI, SPHERE, P1640 and SCExAO. These systems will allow detection of planets 1e7 times fainter than their host star. For space-based missions, such as EXCEDE, EXO-C, EXO-S, WFIRST-AFTA, different teams have shown in laboratories contrasts reaching 1e-10 within a few diffraction limits from the star using a combination of a coronagraph to suppress light coming from the host star and a wavefront control system. These demonstrations use a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved binaries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighbor star Alpha Centauri. Until now, it has been thought that removing the light of a companion star is impossible with the current technology, excluding binary star systems from target lists of direct imaging missions. Direct imaging around binaries or multiples systems at a level of contrast allowing Earth-like planets detection is challenging because the region of interest, where a dark zone is essential, is contaminated by the light coming from the host star's companion. We propose a method to simultaneously correct aberration sand diffraction of light coming from the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.Comment: 8 pages, 13 figures, SPIE Astronomical Telescope and Instrumentation conferenc

    Configurable Aperture Space Telescope

    Get PDF
    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HS

    Expected Occurrence Rates and Types of Planets Possible in the Alpha Centauri AB System

    Get PDF
    Alpha Centauri AB system contains the closest Sun-like stars to the Sun, by a large margin (factor of 2.4). Thus, they are important targets for the search of Earth-like planets. A critical question is whether such planets can exist in the system, and what their expected occurrence rate is. This paper surveys the current knowledge of occurrence rates, limits from nondetections, constraints from observations, and dynamical stability simulations, in order to answer this question

    Compatibility of a Diffractive Pupil and Coronagraphic Imaging

    Get PDF
    Detection and characterization of exo-earths require direct-imaging techniques that can deliver contrast ratios of 10(exp 10) at 100 milliarc-seconds or smaller angular separation. At the same time, astrometric data is required to measure planet masses and can help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high efficiency coronograph to perform direct imaging and a diffractive pupil to calibrate wide-field distortions to enable high precision astrometric measurements. This paper reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronographic imaging systems. No diffractive contamination was found within our detectability limit of 2x10(exp -7) contrast outside a region of 12lambda/D and 2.5x10(exp -6) within a region spanning from 2 to 12lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(exp -7) or better contrast

    Payload characterization for CubeSat demonstration of MEMS deformable mirrors

    Get PDF
    Coronagraphic space telescopes require wavefront control systems for high-contrast imaging applications such as exoplanet direct imaging. High-actuator-count MEMS deformable mirrors (DM) are a key element of these wavefront control systems yet have not been flown in space long enough to characterize their on-orbit performance. The MEMS Deformable Mirror CubeSat Testbed is a conceptual nanosatellite demonstration of MEMS DM and wavefront sensing technology. The testbed platform is a 3U CubeSat bus. Of the 10 x 10 x 34.05 cm (3U) available volume, a 10 x 10 x 15 cm space is reserved for the optical payload. The main purpose of the payload is to characterize and calibrate the onorbit performance of a MEMS deformable mirror over an extended period of time (months). Its design incorporates both a Shack Hartmann wavefront sensor (internal laser illumination), and a focal plane sensor (used with an external aperture to image bright stars). We baseline a 32-actuator Boston Micromachines Mini deformable mirror for this mission, though the design is flexible and can be applied to mirrors from other vendors. We present the mission design and payload architecture and discuss experiment design, requirements, and performance simulations.United States. National Aeronautics and Space Administration (Space Technology Research Fellowship
    corecore